Naming the Problem That Underpins "Rule-out Sepsis"

The Need for Bayesian Thinking

Joseph Schulman, MD, MS
Director, NIQU Quality Measurement and Improvement
California Children's Services
Department of Health Care Services
Sacramento, CA
Joseph.Schulman@dhcs.ca.gov

Many providers appear to consider "Rule-out Sepsis" as a simple categorical matter

- Yes, infection/No - end of investigation.
- If the culture does not grow a pathogen, providers may consider some array of clinical signs and study results nonetheless to indicate "Yes" ("Culture-negative sepsis") with little consideration of alternative explanations.
- We generally don't accept such an approach to diagnostic reasoning for other pathological entities.
- It is crucial to objectively - and when possible, quantitatively - evaluate alternative possible explanations for a particular array of clinical signs and study results.
- Today, we will examine what we mean by evaluating possible explanations objectively and quantitatively.

Differential diagnosis underpins reliably accurate diagnostic assignment

- Providers may feel that once they decide to initiate antibiotics for a symptomatic baby, they and the baby are "covered."
- Such confidence may be warranted only when bacterial infection is objectively the most likely explanation.
- Absent confirmatory culture results, providers may not actually determine "the most likely explanation" from systematic consideration of alternative explanations.
- "Most likely" should amount to a comprehensive and quantitative assessment.
- Other explanations for the clinical presentation may spontaneously resolve without medical intervention, but perhaps sub-optimally.

Clinical/Lab/Imaging Information From Previous Vignettes

- Maternal temperature 103 F shortly before delivery
- Difficulty with first oral feed
- ?Aspiration?
- Increasing respiratory distress at about 4 hours after birth
- CXR with areas of consolidation
- Blood culture negative, or organism of unclear pathological role

For each information element just presented, what explanation comes to mind as most likely?

How many alternatives explicitly come to mind?

Here are just a few possibilities

Not listed in rank order (varies with the individual baby's particulars

- Thermal stress
- Environmental
- Maternal temp - either low, or elevated - effect on neonatal metabolic rate vs nutritional supply
- Retained fetal lung fluid
- Delayed perinatal transition
- Circulatory
- Unequal distribution of ventilation
- Hypoglycemia
- Aspiration
- Bacterial infection
- Viral infection

Physiology of Thermoregulation

Here are just a few possibilities

Not listed in rank order, as this varies with the individual baby's particulars

- Thermal stress
- Environmental
- Maternal temp - either low, or elevated - effect on neonatal metabolic rate vs nutritional supply
- Retained fetal lung fluid
- Delayed perinatal transition
- Circulatory
- Hypoglycemia
- Aspiration
- Bacterial infection
- Viral infection

If Aspiration, or Pneumonia, what evidence is there these can resolve clinically and radiographically in 2-3 days?

Chemical pneumonia (especially meconium aspiration) typically lasts for weeks. The inflammatory process of bacterial or viral pneumonia plausibly does too (remains radiographically evident), but these questions have not been rigorously studied.

Too often, we only see what we look for

It's hard to see the ballerina in this picture if you're used to only looking for flamingos.

AVERY'S DISEASES OF THE NEWBORN
 EIGHTH EDITION

H. William Taeusch, M.D.

Professor and Vice Chair of Pediatrics
University of California, San Francisco San Francisco General Hospital

San Francisco, California
Roberta A. Ballard, M.D.
Professor of Pediatrics and Obstetrics and Gynecology
University of Pennsylvania School of Medicine The Children's Hospital of Philadelphia
Hospital of the University of Pennsylvania
Philadelphia, Pennsylvania
Christine A. Gleason, M.D.
W. Alan Hodson Professor of Pediatrics

Head, Division of Neonatology
University of Washington
Children's Hospital and Regional Medical Center Seattle, Washington

Index

Arrhythmia(s), 873-885 fetal
assessment of, 873, 874f
bradycardia as, 873-876
heart block and, 874-876
premature atrial and ventricular atopy and. 873-874
tachycardia as, $876-879$
supraventricular, 876f, 876-879, 877f ventricular, 879
hydrops fetalis associated with, 64t, 67 neonatal
bradycardiu as, 879f, 879-880, 880f
tachyeardia as, 880-885
supraventricular, 850-884, 881f, 882f ventricular, $884 f, 884-885$
Arterial malformation(s), cutaneous, 1596
Arterial muscle hyperplasia, diaplaragnatic hernia and, 764
Arterial puncture, pain management for, 443 Arteriovenous connection(s), placental, in
monochorionic twins, 58, 58t

Arteriovenous malformation(s), pulmonary, 753
Arthritis, septic, neonatal, 1432-1433
Arthrogryposis, 315
Arthrogryposis multiplex congenita, 1000-1001
neonatal, 1000-1001
Ascites, neonatal, 1103-1104, 1104f, $1104 t$
billar), 1103
billiary, 1103
chylous, $1103,1104 f$
pancreatic, 1104
renal and urinary tract disorders and, 1270 urinary. 1103
with ruptured ovarian cyst, 1104
Ascorbic acid, route, dose, adverse effects, and cautions regarding, 1558, 1566
Ast-leaf macules, 1527, 1527 f
Aspengillus infection(s), in neosatal intensive care unit, 500
Asplyxia, 350-352, 973
definition of, 350
physiology of, 350-351, 352f, 352t, 353f thrombocytopenia due to, neonatal, 1168-1169
Asphyxinting thoracic dystrophy, 759-760, 760f
Asplenia, neonatal, 858-859, 860f
Asplenia syndrome, 793
Assist/control mode ventilation (A/CV), 656, 657

Atropine
for laryngoscopy, 812
route, dose, sdverse effects, and cautions regarding, 1558
Auditory brainstem responses (ABRs), 324
Autocrine system, 46
Autoimmune neonatal thrombocytopenia, maternal
idiopathic thrombocytopenic purpura and,
1171-1172
Autoregulation, cerebral, 904
Autoregulatory escape, 1077-1078
in necrotiving enterooolitis, 112
Autosomal dominant polycystic kidney disease
(ADPKD), 1276-1277, 1277f
Autosomal recessive polycystic ldidney disease
(ARPKD), 1275-1276, $1276 f$
Avery, Mary Ellen, 670

B

B lymphocytes, 459f, 459-460
Baby Doe case, 17
Bacille Calmette-Guérin (BCG) vaccine, for tuberculosis prevention, 547
Bacitracin, route, dose, adverse effects, and cautions regarding, 1558
Back, examination of, for dysmorphology, 197
Bacterial infection(s). Sece also specific infections.
of central nervons system, congenital, neuroimaging of, 830,931 if
Dexter ial amenhingits, neonatal, 509-573 clinical manifestations of, 569,570t-571t diagnosis of, 569, 571, 572t
pathology of, 569
prognosis of, 573
therapy for, 571,573
Bacterial overgrowth, in short bowel syndrome. 1130
Bacterial peritonitis, neonatal, 1104
Bacterial sepsis, neonatal, 551 -568, 550
acute phase reactants and erythrocyte sedimentation rate in, $560-561$
erebrospinal fluid in, 559
clinical manifestations of, 557,557t
clinical spectrum of, 564

Index		
Phototherapy, to reduce serum lilimbin production, 1248-1250	Plasma concentrations in, in neonates, 1147, 11	
Physical dependence, on pain medications, 44	route, dose, aderse effects, und cantion	
Plysical examination of neonate, 306-320, 3075, 308f. 309t	1564 Phasmin, regulation of, 1150	
for nosocomial infection, 305	Pasminogen, fetal, 1147	
gestational age assessment and, 309	Plastic blankets, for temperature megulation	
inspection by system in, 310-318	premature infants, 368	
of abxlomen, $314,3141,315 \mathrm{t}$ of chest and lungs, 313	Plastic hoods, for tempenature regulation o premature infants, 367	
of ery, 311	Phatem dreg concentrations, 434, 434f	
of cars. 312	Platelet(s), 1150, 1152	
of cyex 312.3128	activation and secrettion of, 1152	
of heart and vascular system, 313-314	disorders of, 1168-1172. See also specific	
of mouth and lower fice, 312	qualitative, 1172	
of musculoskeletal system, 315-317, 316f	quenticative, 1168-1172	
of neurologic system. 3175, 317-318, 317t-319t	in neonnate, 1150,1152 finction of, 1150,1152	
3158	Phatelet concentrates, for thrombocytopen	
of nose. 312	1169-1170	
of slin. 311	Phatelet count(s)	
of stail defects, $311-312$	developmental danges in, 1141	
laboratory sereening in. 319-320 overall appearance in, 309-310, 310t	in bacterial sepsis, 560	
ultrasonography in, 318-319	indomethacin and, 892	
of head, 318	testing of, 1152	
of heart, 318-319 of renal svstem, 319	Platelet replacement, for intriventricular b prevention, 1158	
vital signs in, 307-308	Platelet-derived growth factor (PDCF), fet	
wcight length, and head circumference in,	development and. $51 \mathrm{lt}, 56$	
308-300, 309\%	Pleconaril, for enterovirss infection, conge	
Plysical maturity rating form, 1573	Pleurnl cavity disorder(s), 761-763. See elac	
Plysiologic anemia of infancy, 12034, 1200-1204	disouders.	
Phytonadione, route, dose, adverse effects, and cautions regarding, 1566	Pleural effusion diagnosis of, 761, 762 f	
Pietaldism, 1490, 1491f	pathomecclanisms of, 761	
Pierre Rohin syndrome, 190, 200, 737 -735	Pleural fluid	Where is a general discussion of
Pigmented lesions, 1480 Pili torti, in inbonn errors of metabolism, 223t	cleanunce of, decreused, 761	Where is a general discussion of
Pilocytic astrocytoma, neonatal, neuroinaging of, 931	Pharipotent stem cells (PPSCs), 1215 biology of, 1135-1136	"Pneumonia"?
"Ping.pong ball sign, in rickets, 1360	Pneunnocystis carinii pneumonia (PCP), ne	
Piot, Peter, 473	HIV/AIDS, 457-458	
Piperacillin. route, dose, adverse effects, and cautions regarding. 1584	Pneumomediastinum, with mechanical ven 662-663	,
Pitressin, route, dose, adverse effects, and cantions regurding. 1564	diagnosis of, 662, 663f	,
Pituilary defliciency, neonatal hypoglycemia due to, 1416	eptural history of, 662 natal treatment of, $662-663$	
Pityrosporum folliculitis, 1477	Pneumonia, nosecomial, definition of. 579 t	
Pius XII, Pope, 150	Pneunopericardium, with mechasical veal	
Placenta	663, 663\%	
anatomy of, 24, 26, 266, 26t, 27 f	Pneumoperitoneum, with meelianical vent	
circumvalate, 26, 277	Pneumothorax, with mechanical ventilatior	
embryologic development of, 23, 245, 25 f	diagrosis of, 662, 663f	
	cpidemiology of, 66i	
fetal growth restriction rolated to, 33.34 fixed acid excretion and, 1263	matural history of, 062	
amentatur. of os ost		

Common Problems in the Newborn Nursery

An Evidence and Case-based
Guide
Gilbert I. Martin
Warren Rosenfeld Editors

Contents

1 Post-resuscitation Care of the Depressed Newborn........... 1 Stephany M. Guiles and Jay P. Goldsmith
2 Newborn Birth Injuries 13 Smeeta Sardesai

3 Visual Diagnosis in the Newborn . 27 David A. Clark
4 Common Dermatological Conditions . 39
Mercedes E. Gonzalez
5 Evaluation and Management of the Late Preterm Infant. 55 Stephen A. Pearlman and Kaitlin Kenaley
6 Jaundice in the Newborn
Warren Rosenfeld
7 Neonatal Bacterial Infections.
Thomas A. Hooven and Richard A. Polin
8 Viral Infections in the Nursery
Asif Noor, Theresa M. Fiorito, and Leonard R. Krilov
9 Anemia in the Nursery: When to Observe, When to Treat, and When to Refer
Emily A. Morris and Ann R. Stark
10 Neonatal Hypoglycemia David H. Adamkin
11 Disorders of Calcium, Phosphorous, and Magnesium in the Newborn
Arielle L. Olicker, Avroy A. Fanaroff, and Jonathan M. Fanaroff

12 Nutrition in the Newborn

13 Cardiology in the Newborn Nursery
Bruce D. Sindel and Joseph Ahdoot

Arrhythmia (cont.)
tachyarrhythmias
atrial flutter/fibrillation, 154-155
initial therapy, 153
reentrant supraventricular tachycardia, 155
sinus tachycardia, 154
supraventricular tachycardia, 154
ventricular tachyarrhythmia, 155-156
ventricular preexcitation, 158
Arterial cord acidosis, 3, 4
Arthrography, 199
Atresia
duodenal (see Duodenal atresia)
esophageal (see Esophageal atresia)
postsurgery care, 168
surgery care, 168
Atrial flutter/fibrillation, 154-155
Atrial septal defects, 164
Atrioventricular block, 152, 153
Autism, 59
Autoimmune illness, 159
Automated auditory brain stem response (AABR), 228-232
Automatic empiric antibiotic administration, 72
AV node, 151, 152

B

Bacterial conjunctivitis, 220-221
Bacterial infections
ampicillin, 73
B Streptococcus meningitis, 73,74
early-onset sepsis (see Early-onset sepsis)
gentamicin, 73
L. monocytogenes infection, 73
neutrophils, 71
perinatal period, 71
rhinorrhea, 75
Barlow maneuver, 195, 196, 198
Benign asymptomatic rhythm abnormalities. 149
pseudoparalys risk factors, 13 scalp swelling. skull radiograp soft tissue inju subcutaneous f subgaleal hemc
Birthmarks, 39
Blue TETS, 164
Bohn nodules, 30,
Bone marrow failur
Bowel obstruction
diagnosis, 167
differential diagı surgical interven treatment, 168 x-ray, 166
Brachial plexus pals
Brachycephaly, 29, 1
Bradyarrhythmia
atrioventricular bl EKG rhythm, 151 initial therapy, 15 management, 151 PAC-induced brad premature atrial co sinus arrest, 152 sinus bradycardia, Breastfeeding artificial teats, 122 body positioning, 1 bottle-feeding, 122 breast milk, 120
cluster feeding, 124 colostrum, 122 estrogen-containing formula, 123, 126 galactosemia, 125 growth, 127

Pneumonia?

```
Plagiocephaly, 29
plaque neutralization testing (PRNT), }8
Polyhydramnios, 161, 162, 172, 173
polyspenia, 152
positive pressure ventilation (PPV), 6,7,93
Prader-Willi syndrome, 178-180
Preeclampsia, 3, 55, 56,59, 112, 113, 171, 175
Premature atrial contraction (PAC)-induced bradycardia,
153
Primary congenital glaucoma
    clinical presentation, 223
    diagnosis of, }22
    differential diagnosis of, }22
    etiology of,}22
    incidence of, }22
    treatment of,223
    Prostaglandin E1 (PGE), 138, 139, 145, 159
    Pseudo-esotropia, 224
    Pseudoparalysis, 21-23
    Pulmonary artery pressures, 139, 143,145
    Pulmonary vascular resistance (PVR),139
    Pulse oximetry, 136-138, 140-142, 153,157
    P wave, 151-155
```


Q

QRS ventricular conduction, 152

R

Ranula, 31, 45 mypoglycemia, 107
Recurrent/persistenciency, 211
5- α-Reductase-2
Reentrant supraventricular tachycardia, 153-155
Respiratory distress syndrome (RDS), 5
Rhinorrhea, 75, 76
Rhinovirus, 76, 96, 97
RSV bronchiolitis, 58

S
Sacrococcygeal syaging 4y, 4-6, 10, 18
Sarnat staging system, 13-15, 29
Scaln edemal swelling,

SRY gene, 204, 206, 212
Stalked (extra) digits on fifth finger, 27, 28 Standard phototherapy, 67
Steroid 5- α-reductase-2 deficiency (SRD), 211 Strabismus, 223-225
Stuporous newborn, 5
Subcutaneous fat necrosis (SFN), 24, 25
Subgaleal hemorrhage (SGH), 15-18, 92
Sugar Wheel nomogram, 100, 101
Superficial pustules, 40-43
Supernumerary nipples, 35
Synophrys, 30
System lupus erythematosus (SLE), 135, 13 Systemic illness, 159, 172, 174

T

Tachyarrhythmias
atrial flutter/fibrillation, 154-155
initial therapy, 153
reentrant supraventricular tachycardia, sinus tachycardia, 154
supraventricular tachycardia, 154
ventricular tachyarrhythmia, 155-156
Tachypnea, 165
Tetrology di Fallot (TOF), 142, 143, 164
Thalassemias, 97
Therapeutic hypothermia (TH), 1, 4-7,
Thyroglossal duct cysts, 32
Thyroid hyperplasia, 32
Timolol, 49, 51
Tongue-tie, 31
TORCH (toxoplasmosis, rubella, cyton
varicella) screening test, 172 224
Total anomalous pulmonary venous re

Transient neonatal pustures, 40
characteristic diagnosis, 41
differential, 41
treatment,
Transposition of the great arteries (T Transposition of the great vessels (T Treacher Collins syndrome, 30
Tricuspid atresia, 142, 144, 146, 14 Trigonocephaly, 29
Tricupocephaly, 29
Trigon 179, 162 231
Trisomy 21, 166, 168, 132-135, 142,

> Where are
> Transient tachypnea, Retained fetal lung fluid?

Are We Locked Into Unrepresentative Categories for Thinking?

TABLE 1 Distribution of EOS and LOS Rates, Percentage of All Live Births Who Received a Newborn Antibiotic Exposure and Sepsis Diagnostic Efficiency

	Hospital-Level Mean (SD)	10th Percentile	25th Percentile	50th Percentile	75th Percentile	90the Percentile	Lowest	Highest	Statewide
Percentage of births exposed to antibiotics	8.53 (6.27)	3.67	4.69	7.35	9.55	14.14	1.59	42.54	8.43
Diagnostic efficiency, EOS + LOS	66.35 (91.70)	16.54	26.06	41.25	69.50	122.00	7.25	781.00	34.26
EOS Rate (cases per 1000 live births) Diagnostic efficiency	0.72 (0.69) $95.08(71.14)$	0 33.44	0 46.87	0.53 69.52	1.17 122.84	1.70 178.54	0 11.45	2.89 335.75	0.75 88.82
LOS Rate (\% of admissions with high illness acuity) Diagnostic efficiency	3.18 (3.10) 19.60 (24.02)	0 3.88	0 7.09	2.99 12.18	4.69 22.36	7.25 36.96	0 2.02	18.75 164.01	3.67 10.35

Few of us are guided by an objective evidence base derived from our own experience.

Schulman J, Benitz WE, Profit J, et al. Newborn Antibiotic Exposures and Association With Proven Bloodstream Infection. Pediatrics. 2019;144(5):e20191105

Basics of Medical Bayesian Logic

One can't interpret a test result without considering pre-test probability.

- Most tests are imperfect; they do nothing more than adjust probability - which may or may not "rule in" or "rule out" the disease.
- Depends on the situation: risk of not treating when you should have; risk of treating when you shouldn't have.
How often do we actually consider an explicit pretest probability estimate at the bedside?
- We tend to charge ahead ordering tests without explicitly considering what the new information may be reasonably expected to contribute.

Likelihood Ratio

- LR tells you how likely it is a patient has a disease or condition.
- The higher the ratio, the more likely a patient has the disease or condition.
- A low ratio means that they very likely do not.

Likelihood Ratio $=$ probability a person with the condition has a certain test result
probability a person without the condition has a certain test result

- Positive LR: Tells you how much to increase the probability of having a disease, given a positive test result.
- Negative LR: This tells you how much to decrease the probability of having a disease, given a negative test result.

T+ Adjusts probability upward LR(+) a number > 1

T- adjusts probability downward LR(-) a fraction < 1

Fig 1 Nomogram (adapted from www.CEBM.net with permission) to convert pre-test probability to post-test probability using the likelihood ratio. The line refers to a text example

Test Results Are Useful In Relation to Conceptual Thresholds for Action

- Test-treatment, or treatment threshold
- P above which $d x$ sufficiently likely to warrant treatment
- Pre-test P > treatment threshold
- Confirmatory test to increase $\mathrm{P}(\mathrm{D})$ does not contribute.
- No test-test, or test threshold
- P below which dx warrants no further consideration
- Pre-test P < test threshold
- Exclusionary test to further decrease P(D) does not contribute.

No treatment	Test	Treat
$\mathbf{0}$	$\mathbf{T t}$	\mathbf{P}

Test may be diagnostically useful when pre-test $P(D+)$ high enough to test for, not high enough to treat, and if the test can move the $P(D+)$ across either threshold

Did you notice, this is the conceptual approach behind the Kaiser sepsis calculator?

Clinical finding	Likelihood ratio
Common signs	
Pallor	14.4
Poor feeding	8.7
Tachycardia/arrhythmia	5.6
Decreased peripheral perfusion	5.4
Unstable blood pressure	4.0
Abdominal distention	3.5
Apnea	3.1
Lethargy	2.3
Hyperbilirubinemia	2.0
Retractions	1.7
Grunting	1.6
Abnormal tone	1.6
Tachypnea	1.3
Cyanosis	0.3
Temperature instability	0.7
Uncommon signs	
Purpura	47.0
Omphalitis	32.5
Vasomotor instability	8.1
Bleeding	6.5
Pustules	6.1
Bulging fontanel	5.4
Splenomegaly	4.1
Rash	4.0
Diarrhea	3.6
Seizures	2.3

No treatment	Test	Treat
$\mathbf{0}$	Tt	\mathbf{P}

- The error in post-test P attributable to a physician's estimate of pre-test P might be more important than the error involved in many medical tests
- Error or bias in P estimates could mean many hypotheses cross the test or test-treat threshold, demanding more tests be performed and more patients be treated, some unnecessarily.
- Some say it is unnatural for people to give numerical estimations, and that using verbal estimations (such as 'pretty sure' or 'unlikely'), may yield more reliable answers

(BMJ 2006;333:445)

If something always happened, what percentage frequency would you assign to that event? Presumably 100%. And if something never happened? Presumably 0\%. Well, not everyone shares that opinion... The table shows combined results of seven studies of what people mean (Drug Safety 2005;28:851-70)...
For comparison, ...definitions from the Oxford English Dictionary. Look, for example, at "occasionally," "infrequently," and "seldom"... according to the dictionary they all mean roughly the same thing. ...perhaps when we use words like this we should remember what the German conductor Hans Richter supposedly once said: "Up with your damned nonsense will I put twice, or perhaps once, but sometimes always, by God, never."

| Interpretations of words used to indicate frequencies |
| :--- | :---: | :--- |
| Interpretation (range |
| of mean percentages) | Definition in the Oxford English Dictionary \quad| Word | $91-100$ | At every time, on every occasion, at all times, on all occasions. Opposed to sometimes, occasionally |
| :--- | :---: | :--- |
| Invariably/always | $85-94$ | - |
| Almost always | $71-81$ | Under normal or ordinary conditions; as a rule, ordinarily |
| Normally | $70-84$ | In a usual or wonted manner; according to customary, established, or frequent usage; commonly, customarily, ordinarily; as a rule |
| Usually | 64 | - |
| More often than not | $56-69$ | As a usual circumstance; as a general thing; in ordinary cases; usually, ordinarily, generally |
| Common(ly) | $42-71$ | Many times; at many times; on numerous occasions; frequently; for a significant amount or proportion of the time |
| Often | $36-72$ | At frequent or short intervals, often, repeatedly |
| Frequent(ly) | $24-35$ | Rather frequently |
| Not infrequently | $17-21$ | Now and then, at times, sometimes; irregularly and infrequently |
| Occasionally | 12 | As need or opportunity arises; now and then, occasionally |
| On occasion | $12-14$ | Not frequently; somewhat rarely, seldom |
| Infrequently | $11-33$ | On some occasions; at times; now and then |
| Sometimes | $7-8$ | On few occasions, in few cases or instances, not often; rarely, infrequently |
| Seldom | 2 | Scarcely ever |
| Almost never | $0.8-3$ | - |
| Very rare(ly) | $0.5-9$ | Seldom, infrequently, in few instances |
| Rare(ly) | $0.4-1$ | Uncommonly, unusually |
| Exceptionally | $0-2$ | At no time or moment; on no occasion; not ever |
| Never | | |

	BMJ	6 W
Invariably/always	$91-100$	$98-100$
Almost always	$85-94$	$75-99$
Normally	$71-81$	$50->90$
Usually	$70-84$	$50-90$
More often than not	64	$25-100$
Common(ly)	$56-69$	$10-80$
Often	$42-71$	$50-80$
Frequent(ly)	$36-72$	$50-80$
Not infrequently	$24-35$	$33-85$
Occasionally	$17-21$	$10-40$
On occasion	12	$10-30$
Infrequently	$12-14$	$5-20$
Sometimes	$11-33$	$4-40$
Seldom	$7-8$	$<2-20$
Almost never	2	$1-10$
Very rare(ly)	$.8-3$	$.5-20$
Rare(ly)	$.5-9$	$.1-20$
Exceptionally	$.4-1$	$.01-10$
Never	$0-2$	0

Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants

Woodward, Anderson, Austin, Howard, and Inder
N Engl J Med 2006;355:685-94

Methods

We studied 167 very preterm infants (gestational age at birth, 30 weeks or less) to assess the associations between qualitatively defined white-matter and graymatter abnormalities on MRI at term equivalent (gestational age of 40 weeks) and the risks of severe cognitive delay, severe psychomotor delay, cerebral palsy, and neurosensory (hearing or visual) impairment at 2 years of age (corrected for prematurity)...

Conclusions

Abnormal findings on MRI at term equivalent in very preterm infants strongly predict adverse neurodevelopmental outcomes at two years of age. These findings suggest a role for MRI at term equivalent in risk stratification for these infants.

Conclusions

Abnormal findings on MRI at term equivalent in very preterm infants strongly predict adverse neurodevelopmental outcomes at two years of age...

What do they mean by "strongly"? "Almost always"; "often"; "sometimes"? Does it depend on whether you're speaking to someone at your own NICU or in Boston?
-Using incidence data provided in the article for
i. severe cognitive delay
ii. severe motor delay
iii. CP
iv. neurosensory impariment
and based on the test characteristics in the following Table, how much does the posttest probability of certain outcomes change?

Outcome	Moderate-to-Severe WhiteMatter Abnormalities ($\mathrm{N}=35$)		Any White-Matter Abnormalities$(\mathrm{N}=120)$		Abnormalities on Cranial Ultrasonography $\dagger$$(\mathrm{N}=13)$	
	Sensitivity	Specificity	Sensitivity per	Specificity	Sensitivity	Specificity
Severe cognitive delay						
Value	41	84	89	31	15	95
95\% CI	23-61	76-89	70-97	23-39	4-35	89-98
Severe motor delay						
Value	65	85	88	30	18	95
95\% CI	39-85	78-90	62-98	22-38	5-44	89-97
Cerebral palsy						
Value	65	84	94	31	18	95
95\% CI	39-85	76-89	69-100	24-39	5-44	89-97
Neurosensory impairment						
Value	82	82	89	30	16	95
95\% CI	48-97	75-88	65-98	23-38	4-40	89-97
Any neurodevelopmental impairment						
Value	38	89	84	34	11	95
95\% CI	25-51	80-94	71-92	25-44	4-23	89-98

* Cl denotes confidence interval.
\dagger Abnormalities on cranial ultrasonography were defined as grade III or IV intraventricular hemorrhage or periventricular leukomalacia.
Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants
Lianne J. Woodward, Ph.D., Peter J. Anderson, Ph.D., Nicola C. Austin, M.D., et al NEJM 2006;355:685-94

Likelihood Ratios

	Moderate to Severe White Matter Abn		Any Abnormality		Abnormality on Cranial Ultrasound	
	LR +	LR -	LR +	LR -	LR +	LR -
Severe Cognitive Delay	2.56	0.70	1.29	0.36	3	0.89
Severe Motor Delay	4.33	0.412	1.26	0.4	3.6	0.863
Cerebral Palsy	4.06	0.417	1.36	0.19	3.6	0.86
Neurosensory Impairment	4.56	0.22	1.27	0.37	3.2	0.88
Any Neurodevelop Impairment	3.45	0.7	1.27	0.47	2.2	0.94

Remember,
Positive LR: Tells you how much to increase the probability of having a disease, given a positive test result.
Negative LR: This tells you how much to decrease the probability of having a disease, given a negative test result.

Let's Name The Problem

- Too often, we appear to be locked into unrepresentative categories for thinking.
- Most of the babies we treat with antibiotics represent indistinct diagnostic categories, for which our evidence base is insufficient to objectively assign probability of disease.
- We often devote insufficient effort exploring differential diagnoses because the underlying pathophysiology resolves spontaneously - so, "it doesn't seem to matter" that diagnosis is less than definitive.
- If we rule-out sepsis, we should rule-in the condition that explains the baby's problem.

Let's Name The Problem

- Our EMRs must help us compute the unintuitive, quantitative aspects of our decision making for possible bacterial infection and related differential diagnoses.
- We must move beyond vague, undefined thresholds for action when "ruling out sepsis."
- At what estimated probability value that a patient has a bacterial infection do we test, do we treat?

No treatment	Test	Treat	
$\mathbf{0}$	Tt	\mathbf{P}	$\mathbf{T t r x}$

